Serial communication protocol

Modbus ${ }^{\circledR}$ for TC10

Document number: IM 05C01E81-03EN

Third edition: Feb. 2018

TC10 COMMUNICATION PROTOCOL

Index

1 Preface 3
2 Physical connection 3
2.1 Interface 3
2.2 Line 3
3 Communication protocol 3
3.1 Function code 3: read multiple registers (max. 16 registers for TC10) 4
3.2 Function code 6: write a single word (one location) 5
3.3 Function code 16: preset multiple registers (maximum 16 registers for TC10) 5
3.4 The exception reply 6
3.5 Cyclic redundancy check (CRC) 6
4 Data exchange 8
4.1 Some definitions 8
4.2 Memory zones 8
4.3 Variables zones 8
4.4 Most important changes 8

1 PREFACE

TC10 uses Modbus® RTU communication protocol. Modbus is a royalty free protocol and is easy to be implemented. For Modbus RTU a vast literature is available also in internet.
The Modbus protocol represent all data in hexadecimal format. All communication string finish with a check sum type CRC (cyclic redundancy check).

Each device on a line must have different address. The protocol allows one master only and up to 255 slaves
Only the Master unit can start the transmission by sending the address of the unit and the command to be executed. Only the unit having the correct address will answer to the master.
The transmission characteristics are usually programmable:
Device address: From 1 to 255.
Baud rate: bit per second.
byte format:

- 1 start bit;
- 8 data bitis;
- 2 final bits composed as follows:

1 parity bit (even or odd);
1 stop bit;
or
no parity bit;
2 stop bits.
The TC10 allows to configure:

- address (1 to 254);
- Baud rate (1200-2400-9600-19200-38400).

The byte format is fixed: 8 bits without parity and 1 stop bit.
This document is intended to describe the TC10 controllers using the Modbus protocol in their communication capability and is mainly directed to technicians, system integrators and software developers.

2 PHYSICAL CONNECTION

2.1 Interface

TC10 controllers are provided with a RS485 serial communication interface, insulated so that any problem arising from ground potential is removed.
While at rest, the instruments are in a receive condition and are revert to transmission after a correct message has been decoded that matches the configured address.

2.2 Line

The instruments are equipped with 2 terminals named A and B .
The connection between TC10s has to be carried on in parallel, i.e. all A terminals have to be connected between them so as B terminals. A termination resistor of 120Ω is required to maintain the quiescent condition on the line.
Adopted baud rates range 1200 to 38400 baud, that is very satisfactory for application performances, yet very slow for RS485 interface. This fact allows the wiring of the line with a medium quality twisted pair cable: total capacity of the line should not exceed 200 nF .
The line can be up to 1000 meters in length.

3 COMMUNICATION PROTOCOL

The protocol adopted by TC10 is a subset of the widely used Modbus RTU (JBUS, AEG Schneider Automation, Inc. registered trade mark) protocol, so that connections are easy for many commercial PLCs and supervisory programs.
For users needing to develop their own communication software, all information is available as well as implementation hints.
The Modbus RTU (JBUS) communication functions implemented in TC10 series are:
Function $3 \quad$ Read n register;
Function 6 Preset one register;
Function 16 Preset multiple registers.
These functions allow the supervisory program to read and modify any data of the controller. The communication is based on messages sent by the master station (host) to the slave stations (TC10) and viceversa. The slave station that recognises the message as sent to it, analyses the content and, if it is formally and semantically correct, generates a reply message directed back to the master.

The communication process involves five types of messages:

From master to slave	From slave to master
Function 3: read n registers request	Function 3: read n registers reply
Function 6: preset one register request	Function 6: preset one register reply
Function 16: preset multiple registers request	Function 16: preset multiple registers reply
	Exception reply (as reply to all functions in abnormal conditions)

All messages contain four fields:
\checkmark Slave address (from 1 to 255): Modbus RTU (JBUS) reserves address 0 for broadcasting messagesand it is implemented in the TC10 series;
\diamond Function code: contains 3, 6 or 16 for specified functions;
\diamond Information field: contains data like word addresses and word values as required by function in use;
\diamond Control word: a cyclic redundancy check (CRC) performed with particular rules for CRC16.
The characteristics of the asyncronous transmission are 8 bits, no parity, one stop bit.

3.1 Function code 3: read multiple registers (max. 16 registers for TC10)

This function code is used by the master to read a group of sequential registers present in the slave.

Master request	Byte
Data	1
Slave address (1 to 255)	1
Function code (3)	1
First register address (MSB = Most Significant Byte)	1
First register address (LSB = Less Significant Byte)	1
Number of requested registers (MSB)	1
Number of requested registers (LSB)	1
CRC-16 (LSB)	1
CRC-16 (MSB)	1

Slave reply	Data
Byte	
Slave address (1 to 255)	1
Function code (3)	1
Byte number (n)	1
Data(s)	n
CRC-16 (LSB)	1
CRC-16 (MSB)	1

In the "Data(s)" fild the values of the requested registers are presented in word format [2 byte]: the first byte represent the MSB (Most Significant Byte) while the second byte represent the LSB (Less Significant Byte). This mode will be the same for all requested locations. Example: The master requires to the address 1 the value of the locations 25 and 26 (0×19 and $0 \times 1 \mathrm{~A}$).

Master request	
Data	Byte (Hex)
Slave address	01
Function code (3 = read)	03
First register address (MSB)	00
First register address (LSB)	19
Number of requested registers (MSB)	00
Number of requested registers (LSB)	02
CRC-16 (LSB)	15
CRC-16 (MSB)	CC

Slave reply	
Data	Byte (Hex)
Slave address	01
Function code (3 = read)	03
Byte number	04
Value of the first register (MSB)	00
Value of the first register (LSB)	0 A
Value of the second register (MSB)	00
Value of the second register (LSB)	14
CRC-16 (LSB)	DA
CRC-16 (MSB)	$3 E$

The slave replay means:
The value of the location $25=10$ ($0 x 000 \mathrm{~A}$ hexadecimal)
The value of the location $26=20$ (0×0014 hexadecimal)

3.2 Function code 6: write a single word (one location)

Master request	
Data	Byte (Hex)
Slave address	01
Function code (6)	06
Register address (MSB)	03
Register address (LSB)	02
Value to write (MSB)	00
Value to write (LSB)	0 A
CRC-16 (MSB)	A8
CRC-16 (LSB)	49

Slave reply	
Data	Byte (Hex)
Slave address (1-255)	1
Function code (6)	1
Register address (MSB)	1
Register address (LSB)	1
Written value (MSB)	1
Written value (LSB)	1
CRC-16 (MSB)	1
CRC-16 (LSB)	1

Example: The master unit asks to the slave 1 to write in the memory location 770 (0×302) the value $10(0 \times 0 A)$.

Master request		Slave reply	
Data	Byte (Hex)	Data	Byte (Hex)
Slave address	01	Slave address	01
Function code (6)	06	Function code (6)	06
Register address (MSB)	03	Register address (MSB)	03
Register address (LSB)	02	Register address (LSB)	02
Value to write (MSB)	00	Written value (MSB)	00
Value to write (LSB)	OA	Written value (LSB)	OA
CRC-16 (MSB)	A8	CRC-16 (MSB)	A8
CRC-16 (LSB)	49	CRC-16 (LSB)	49

3.3 Function code 16: preset multiple registers (maximum 16 registers for TC10)

This function code allows to preset 16 registers at a time.

Master request	
Data	Byte (Hex)
Slave address (1-254)	1
Function code (16)	1
First register address (MSB)	1
First register address (LSB)	1
Number of requested registers (MSB)	1
Number of requested registers (LSB)	1
Byte count	1
Values	n
CRC-16 (LSB)	1
CRC-16 (MSB)	1

Slave reply	
Data	Byte (Hex)
Slave address (1-254)	1
Function code (16)	1
First register address (MSB)	1
First register address (LSB)	1
Number of written registers (MSB)	1
Number of written registers (LSB)	1
CRC-16 (LSB)	1
CRC-16 (MSB)	1

Example: The master unit requires to the slave 1 to write in the registers 10314 ($0 \times 284 \mathrm{~A}$) and 10315 ($0 \times 284 \mathrm{~B}$) the values 100 (0×64) and 200 (0xC8)

Master request	
Data	Byte (Hex)
Slave address	01
Function code (16)	10
First register address (MSB)	28
First register address (LSB)	4 A
Number of requested registers (MSB)	00
Number of requested registers (LSB)	02
Byte count	04
Value 1 (MSB)	00
Value 1 (LSB)	64
Value 2 (MSB)	00
Value 2 ((LSB)	C8
CRC-16 (LSB)	C9
CRC-16 (MSB)	A8

Slave reply	
Data	Byte (Hex)
Slave address	01
Function code (16)	10
First register address (MSB)	28
First register address (LSB)	4 A
Number of written registers (MSB)	00
Number of written registers (LSB)	02
CRC-16 (LSB)	69
CRC-16 (MSB)	BE

3.4 The exception reply

TC10 replies with an exception when the request is formally correct, but cannot be satisfied standing particular situations; the reply contains a code indicating the cause of the missing regular reply, the frame is:

Exception replay	
Data	Byte (Hex)
Slave address	1
Function code	1
Error code	1
CRC-16 (LSB)	1
CRC-16 (MSB)	1

TC10 adopts a subset of Modbus RTU (JBUS) exception code:

- unknown function code 1
- invalid memory address 2
- invalid data field 3
- controller not ready 6

3.5 Cyclic redundancy check (CRC)

CRC is a check word that permits to verify the integrity of a message. Every message, sent or received, has in the two last characters the CRC check word.

After receiving a request, the controller checks the validity of the received message comparing the received CRC with the calculated one. When a reply is ready the controller calculates the CRC word and adds two characters to the prepared message. CRC calculation is performed on every character of the message, excluding the last two.

Being Modbus RTU (JBUS) compatible, TC10 controllers adopt an identical algorithm for CRC calculation, sketched in following diagram:

The polinomial adopted by Modbus RTU (JBUS) is 1010000000000001.
Note: The first transmitted character of the CRC word is the least significant between calculated bytes.
A subrutine made with "C" able to calculate the CRC-16 follows.

```
* ---------------------------------------------------------------------
crc 16 Calculation of CRC-16
Input parameters:
    buffer: character string to compute the CRC-16
    length: number of bytes in the string
This function returns the value of the CRC-16
---------------------------------------------------------------------*/
unsigned int crc_16 (unsigned char *buffer, unsigned int length)
{
    unsigned int i, j, temp_bit, temp_int, crc;
    crc = 0xFFFF;
    for (i = 0; i < length; i++){
        temp_int = (unsigned char) *buffer++;
        crc ^= temp_int;
        for (j = 0; j < 8; j++) {
            temp_bit = crc & 0x0001;
        crc >>= 1;
        if (temp_bit != 0)
            crc ^= 0xA001;
    }
}
    return (crc);
}
Note: All numerical values in the format 0x.... are expressed in hexadecimal format.
```


4 DATA EXCHANGE

This section contains informations about data exchanged with TC10 series controllers concerning numerical and not numerical data, with their formats and limits.

4.1 Some definitions

All exchanged data are in the form of 16 bit words.
Two types of data are distinguished: numerical and symbolic (or not numerical).
Numerical data represents the value of a quantity (e.g. the measured variable, the set point).
Symbolic data represents a particular value in a set of values (e.g. the thermocouple type in the set of available ones: J, K, S, etc.). Both types are coded as integers number: signed numbers for numerical and unsigned numbers for symbolic.
A numerical data, coded as an integer, is coupled with appropriate number of decimal digits to represent a quantity with the same engineering units adopted aboard the instrument.

Numerical data are in fixed point representation; however we make a distinction between two kind of data:
\diamond The first kind has determined and unmodifiable decimal point position;
\diamond The second has programmable decimal point position (dP parameter).

4.2 Memory zones

All readable and writable data appear to be allocated as 16 bit words in the memory of the instrument. The memory map has three zones:
\checkmark Varaibles,
\checkmark Parameters,
\diamond Instrument identification code.
Following parameters explore the characteristics of each zone.

4.3 Variables zones

In this zone there is a collection of main TC10 controller variables, it is a group of frequently computed or updated data residing in volatile memory.

4.4 Most important changes

A) During parameter modification by push-button, the serial interface continue to operate without any "limit" (you can see by serial link the value of all parameters and you can set it also).
B) When you write a value in a location the instrument will operate as follows:
B.1) If you write a value within parameter range, the instrument will accept it; the new value will be memorized and the instrument will send back the standard answer.
B.2) If you try to write a value OUT of parameter range, the instrument will refuse the new value; the new value will NOT be memorized and the instrument will send an exception message to the master.

5 ADDRESS MAP

The instrument use only words:

Initial address		Final address		Mining
Hex	Dec	Hex	Dec	
1	1	1D	29	Numeric values calculated and dinamically updated. Available in read and write operations
200	512	250	592	Numeric values calculated and dinamically updated. Available in read and write operations
280	640	31B	795	Configuration parameters: Numeric and symolic values. Available in read and write operations
2800	10240	289B	10395	Repetition of the configuration parameters: Numeric and symolic values. Available in read and write operations

5.1 Common Variables

no.	Address			Description	Dec. Point	r/w
	Hex	Dec	Ref. no.			
1A	1	1	40002	PV: Measured value Note: When a measuring error is detected the instrument sends: - $10000=$ Underrange - 10000 = Overrange - 10001 = Overflow of the A/D converter - 10003 = Variable not available		r
2A	2	2	40003	Number of decimal figures of the measured value	0	r
3A	3	3	40004	Operative set point (value)	dP	r
4A	4	4	40005	Power output Range: - 100.00 to 100.00 (\%) Note: This parameter is always writeable but it will be active only when the instrument operates in Manual mode.	2	r/w
5A	5	5	40006	Active set point selection $\begin{array}{ll} 0= & S P \\ 1= & S P 2 \\ 2= & S P 3 \\ 3= & S P 4 \end{array}$	0	r/w
6A	6	6	40007	SP Range: SPLL to SPLH	dP	r/w
7A	7	7	40008	SP 2 Range: SPLL to SPLH	dP	r/w
8A	8	8	40009	SP 3 Range: SPLL to SPLH	dP	r/w
9A	9	9	40010	SP 4 Range: SPLL to SPLH	dP	r/w
10A	A	10	40011	Alarms status bit 0 $=$ Alarm 1 status bit 1 $=$ Alarm 2 status bit 2 $=$ Alarm 3 status bit 3 to 8 $=$ Reserved bit 9 $=$ LBA status bit 10 $=$ power feilure indicator bit 11 $=$ Generic error bit 12 $=$ Overload alarm bit 13 to 15 Reserved	0	r
11A	B	11	400412	```Outputs status (physical outputs) bit \(0 \quad=\) Output 1 status bit \(1=\) Output 2 status bit \(3=\) Output 3 status bit \(4=\) Output 4 status bit \(5=\) Output 5 status bit 6 to \(15=\) Reserved When an output is driven by serial link, the relative bit will remain equal to 0 .```	0	r

no.	Address			Description	Dec. Point	r/w
	Hex	Dec	Ref. no.			
12A	C	12	40013	Instrument status bit 0 $=$ Automatic bit 1 $=$ manual bit 2 $=$ Standby bit 3 $=$ Remote Set point (temporary) used bit 4 $=$ Auto-tuning active bit 5 $=$ Self tuning active bit 6 $=$ Reserved bit 7 $=$ Reserved bit 8 $=$ Soft start running bit 9 $=$ Ramp for set point change (up or down) running bit 10 $=$ Delay at start up (od) running bit 11 $=$ Reserved bit 12 $=$ Measure status (0 = OK while 1 = error). bit 13 to $15=$ Reserved	0	r
13A	D	13	40014	Alarms reset $0=$ Not resetted $1=$ Resetted	0	r/w
14A	E	14	40015	Alarms acknowledge $0=\quad$ Not acknowledged $1=\quad$ Acknowledged	0	r/w
15A	F	15	40016	Control status $0=$ Automatic $1=$ Manual $2=$ Stand-by	0	r/w
16A	10	16	40017	Remote set point (temporary) (from serial link) Range: SPLL to SPLH Note: the remote set point is stored in RAM	dP	r/w
17A	11	17	40018	$\begin{array}{\|ll} \hline \text { Auto tuning activation } \\ 0= & \text { not active } \\ 1= & \text { active } \\ \hline \end{array}$	0	r/w
18A	12	18	40019	Power output used when a measuring error is detected. Range: - 100 to 100 Note: This value is stored in RAM	0	r/w
19A	13	19	40020	Default parameters loading. $481=$ Default parameter loading	0	r/w
20A	14	20	40021	Parameters table identification code Range: 0 to 65535 Note: The word is composed by two parts: - Low byte - Version of the parameter table - High byte - Version of the family protocoll	0	r
21A	15	21	40022	Instrument identification code $20=\quad \mathrm{TC} 10$	0	r
22A	16	22	40023	First temporary code for speed configuration The code is composed by two distinct 4 digits subcodes: AABB where: AA = Input type: 0 to 25 BB = Control type and service functions 0 to 21 Note: $10000=$ Temporary value not inserted The programmed codes will be activated only after both have been correctly be programmed. The order has no importance.	0	r/w
23A	17	23	40024	Second temporary code for speed configuration The code is composed by two distinct 4 digits subcodes: CDEF where: C = Alarm type 1:0 to 9 D = Alarm type 2: 0 to 9 $E=\quad$ Alarm type 3: 0 to 9 F = Enabling service functions: 0 to 4 Note: $10000=$ Temporary value not inserted The programmed codes will be activated only after both have been correctly be programmed. The order has no importance.	0	r/w
24A	18	24	40025	First final code for speed configuration When programmed, the code is composed by two distinct 4 digits subcodes: AABB where: AA = Input type: 0 to 25 BB $=$ Control type and service functions: 0 to 21 If not programmed, the return value is $-1=$ Code not programmed.	0	r

no.	Address			Description	Dec. Point	r/w
	Hex	Dec	Ref. no.			
25A	19	25	40026	Second temporary code for speed configuration When programmed, the code is composed by two distinct 4 digit subcodes: CDEF where: C = Alarm type 1:0 to 9 D = Alarm type 2:0 to 9 $\mathbf{E}=\quad$ Alarm type 3:0 to 9 F = Enabling service functions: 0 to 4 If not programmed, the return value is $-1=$ Code not programmed.	0	r
26A	1A	26	40027	Reserved	0	r
27A	1B	27	40028	Manual autotuning start request pending for Od or Soft start Range: $0=$ No pending request waiting for the execution; 1 = Pending request waiting for the execution	0	r
28A	1 C	28	40029	Autotuning start request pending for setpoint change for Od or Soft start Range: $0=$ No pending request waiting for the execution; 1 = Pending request waiting for the execution	0	r
29A	1D	29	40030	Value to be retransmitted on the analogue Output Range: Ao1L to Ao1H	0	r/w

5.2 Common variables (continued)

no.	Address			Description	Dec. Point	r/w
	Hex	Dec	Ref. no.			
1B	0200	512	40513	PV : Measured value As address 1	dP	r
2B	0201	513	40514	Number of decimal figure of the measured value As address 2	0	r
3B	0202	514	40515	Power output As address 4	2	r
4B	0203	515	40516	Power output of the heating output Range: 0 to 100.00 (\%)	2	r
5B	0204	516	40517	Power output of the cooling output Range: 0 to 100.00 (\%)	2	r
6B	0205	517	40518	$\begin{aligned} & \text { Alarm } 1 \text { status } \\ & 0=O F F \\ & 1=O N \end{aligned}$	0	r
7B	0206	518	40519	$\begin{aligned} & \text { Alarm } 2 \text { status } \\ & 0=O F F \\ & 1=O N \end{aligned}$	0	r
8B	0207	519	40520	$\begin{aligned} & \text { Alarm } 3 \text { status } \\ & 0=\text { OFF } \\ & 1=O N \end{aligned}$	0	r
9B	0208	520	40521	Operative set point As address 3	DP	r
10B	020A	522	40523	$\begin{aligned} & \text { LBA status } \\ & 0=\text { OFF } \\ & 1=\mathrm{ON} \end{aligned}$	0	
11B	020E	526	40527	Overload alarm status $\begin{aligned} & 0=O F F \\ & 1=O N \end{aligned}$	0	r
12B	020F	527	40528	$\begin{aligned} & \hline \text { Controller status } \\ & 0=\text { Stand-by } \\ & 1 \text { = Auto } \\ & 2=\text { Tuning } \\ & 3=\text { Manual } \\ & \hline \end{aligned}$	0	r
13B	0224	548	40549	Status/remote control of the Output 1 $\begin{aligned} & 0=\mathrm{OFF} \\ & 1=\mathrm{ON} \end{aligned}$ Note: This parameter is writeable when out 1 is "not used" by the controller (o1F output 1 function = nonE). This parameter is stored in RAM	0	r/w
14B	0225	549	40550	Status/remote control of the Output 2 $\begin{aligned} & 0=\mathrm{OFF} \\ & 1=\mathrm{ON} \end{aligned}$ Note: This parameter is writeable when out 2 is "not used" by the controller (o2F output 1 function = nonE). This parameter is stored in RAM	0	r/w

no.	Address			Description	Dec. Point	r/w
	Hex	Dec	Ref. no.			
15B	0226	550	40551	Status/remote control of the Output 3 $\begin{aligned} & 0=\mathrm{OFF} \\ & 1=\mathrm{ON} \end{aligned}$ Note: This parameter is writeable when out 3 is "not used" by the controller (o3F output 1 function = nonE). This parameter is stored in RAM	0	r/w
16B	0227	551	40552	Status/remote control of the Output 4 $\begin{aligned} & 0=\mathrm{OFF} \\ & 1=\mathrm{ON} \end{aligned}$ Note: This parameter is writeable when out 4 is "not used" by the controller (o4F output 1 function = nonE). This parameter is stored in RAM	0	r/w
17B	0240	576	40577	Digital input 1 status $\begin{aligned} & 0=O F F \\ & 1=O N \end{aligned}$ Note: Digital input 1status can be read from the serial port even if the input is not used by the controller	0	r/w
18B	0241	577	40578	Digital input 2 status $\begin{aligned} & 0=O F F \\ & 1=O N \end{aligned}$ Note: Digital input 2 status can be read from the serial port even if the input is not used by the controller	0	r/w
19B	0244	580	40581	Reserved		
20B	0245	581	40582	Reserved		
21B	0246	582	40583	Reserved		
22B	0247	583	40584	Reserved		
23B	0248	584	40585	Reserved		
24B	0249	585	40586	Reserved		
25B	024A	586	40587	Wattmeter: The meaning of this parameter is defined by the CO.ty parameter setting. CO.ty = Off kW CO.ty $=1$ kWh CO.ty $=2$ CO.ty = 3 Reserved Worked days CO.ty $=4$ Worked hours CO.ty $=5$	0	r
26B	024B	587	40588	Reserved	0	r
27B	024C	588	40589	Days counted with the controller Powered ON Range: 0 to 9999	0	r
28B	0250	592	40593	Power output when the instrument is in manual mode Range:-10000 to 10000 (\%)	2	r/w

5.3 Parameters Setting: Addresses from 280 hex (640 dec) and 2800 hex (10240 dec)

5.3.1 inP GROUP - Main and auxiliary input configuration

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
1	SEnS	$\begin{array}{r} 280 \\ 2800 \end{array}$	$\begin{array}{r} 640 \\ 10240 \end{array}$	40641	Input Type	$\begin{aligned} & 0=\mathrm{J}=\mathrm{TC} \mathrm{~J}, \\ & 1=\mathrm{crAL}=\mathrm{TC} \mathrm{~K}, \\ & 2=\mathrm{S}=\mathrm{TC} \mathrm{~S}, \\ & 3=\mathrm{r}=\mathrm{TC} \mathrm{R}, \\ & 4=\mathrm{t}=\mathrm{TC} \mathrm{~T}, \\ & 5=\text { Reserved, } \\ & 6=\text { Reserved, } \\ & 7=\mathrm{Pt} 1=\text { RTD Pt100, } \\ & 8=\mathrm{Pt} 10=\mathrm{RTD} \mathrm{Pt} 1000, \\ & 9=0.60=0 \text { to } 60 \mathrm{mV}, \\ & 10=12.60=12 \text { to } 60 \mathrm{mV}, \\ & 11=0.20=0 \text { to } 20 \mathrm{~mA}, \\ & 12=4.20=4 \text { to } 20 \mathrm{~mA}, \\ & 13=0.5=0 \text { to } 5 \mathrm{~V}, \\ & 14=1.5=1 \text { to } 5 \mathrm{~V}, \\ & 15=0.10=0 \text { to } 10 \mathrm{~V}, \\ & 16=2.10=2 \text { to } 10 \mathrm{~V} \\ & \hline \end{aligned}$	0	r/W
2	dp	$\begin{array}{r} 281 \\ 2801 \end{array}$	$\begin{array}{r} 641 \\ 10241 \end{array}$	40642	Decimal Point Position (linear inputs)	0 to 3	0	r/w
					Decimal Point Position (different than linear inputs)	0/1		

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
3	SSC	$\begin{array}{r} 282 \\ 2802 \end{array}$	$\begin{array}{r} 642 \\ 10242 \end{array}$	40643	Initial scale read-out for linear inputs	-1999 to 9999	dP	r/w
4	FSc	$\begin{array}{r} 283 \\ 2803 \\ \hline \end{array}$	$\begin{array}{r} 643 \\ 10243 \end{array}$	40644	Full Scale Readout for linear inputs	-1999 to 9999	dP	r/w
5	unit	$\begin{array}{r} 284 \\ 2804 \end{array}$	$\begin{array}{r} 644 \\ 10244 \end{array}$	40645	Engineering unit	$\begin{aligned} & 0=\mathrm{C}={ }^{\circ} \mathrm{C} \\ & 1=\mathrm{F}={ }^{\circ} \mathrm{F} \end{aligned}$	0	r/w
6	Fil	$\begin{array}{r} 285 \\ 2805 \end{array}$	$\begin{array}{r} 645 \\ 10245 \end{array}$	40646	Digital filter on the measured value Note: This filter affects the control action, the PV retransmission and the alarms action.	0 (OFF) to 200 (in seconds)	1	r/w
7	inE	$\begin{array}{r} 286 \\ 2806 \end{array}$	$\begin{array}{r} 646 \\ 10246 \end{array}$	40647	Sensor error used to enable the safety output value	$\begin{aligned} & \hline \text { or = Over range } \\ & \text { ou = Under range } \\ & \text { our = Over and under range } \end{aligned}$	0	r/w
8	oPE	$\begin{array}{r} 287 \\ 2807 \end{array}$	$\begin{array}{r} 647 \\ 10247 \end{array}$	40648	Safety output value (\% of the output)	-100 to 100	0	r/w
9	IO4.F	$\begin{array}{r} 288 \\ 2808 \end{array}$	$\begin{array}{r} 648 \\ 10248 \end{array}$	40649	I/O 4 function	$\begin{aligned} & 0=\text { on = Output used as PWS for TX, } \\ & 1=\text { out } 4=\text { Output } 4 \text { (digital output } 4 \text {), } \\ & 2=\text { dG2c = Digital input } 2 \text { driven by contact, } \\ & 3=\text { dG2U }=\text { Digital input } 2 \text { driven by voltage } \end{aligned}$	0	r/w
10	diF1	$\begin{array}{r} 289 \\ 2809 \end{array}$	$\begin{array}{r} 649 \\ 10249 \end{array}$	40650	Digital Input 1 function	$0=$ oFF = Not used, 1 = Alarm reset, 2 = Alarm acknowledge (ACK), 3 = Hold of the measured value, $4=$ Stand by mode, $5=$ Manual mode, $6=$ HEAt with SP1 and CooL with SP2, 7 to 17 = Reserved, 18 = Sequential SP selection, 19 = SP1 - SP2 selection, $20=$ SP1 to SP4 binary selection, $21=$ Digital inputs in parallel to Δ / ∇ keys	0	r/w
11	diF2	$\begin{array}{r} 28 \mathrm{~A} \\ 280 \mathrm{~A} \end{array}$	$\begin{array}{r} 650 \\ 10250 \end{array}$	40651	Digital Input 2 function	$0=$ oFF $=$ Not used, 1 = Alarm reset, 2 = Alarm acknowledge (ACK), 3 = Hold of the measured value, $4=$ Stand by mode, $5=$ Manual mode, $6=$ HEAt with SP1 and CooL with SP2, 7 to 17 = Reserved, 18 = Sequential SP selection, $19=$ SP1 - SP2 selection, $20=$ SP1 to SP4 binary selection, $21=$ Digital inputs in parallel to Δ / ∇ keys	0	r/w
12	di.a	$\begin{array}{r} 31 C \\ 289 C \end{array}$	$\begin{array}{r} 796 \\ 10396 \end{array}$	40797	Digital Inputs Action (Dl2 only if configured)	$\begin{aligned} & 0=\text { DI1 direct action, DI2 direct action } \\ & 1=\text { DI1 reverse action, DI2 direct action } \\ & 2=\text { DI1 direct action, DI2 reverse action } \\ & 3=\text { DI1 reverse action, DI2 reverse action } \end{aligned}$	0	r/w

5.3.2 Out group

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
13		$\begin{array}{r} 28 B \\ 280 B \end{array}$	$\begin{array}{r} 651 \\ 10251 \end{array}$	40652	Output 1 type (when Out 1 is an analog output)	$\begin{aligned} & 0=0-20=0 \text { to } 20 \mathrm{~mA} \\ & 1=4-20=4 \text { to } 20 \mathrm{~mA} \\ & 2=0-10=0 \text { to } 10 \mathrm{~V} \\ & 3=2-10=2 \text { to } 10 \mathrm{~V} \end{aligned}$	0	r/w
					Out 1 function (when Out 1 is an analog output)	$\begin{aligned} & 0=\text { NonE }=\text { Output not used } \\ & 1=\text { H.rEG }=\text { Heating output } \\ & 2=\text { crEG }=\text { Cooling output } \\ & 3=\text { r.inP }=\text { Measure retransmission } \\ & 4=\text { r.Err }=\text { Error }(\mathrm{sp}-\mathrm{PV}) \text { retransmission } \\ & 5=\text { r.SP }=\text { Set point retransmission } \\ & 6=\text { r.SEr }=\text { Serial value retransmission } \end{aligned}$		
14	01F	$\begin{array}{r} 28 C \\ 280 C \end{array}$	$\begin{array}{r} 652 \\ 10252 \end{array}$	40653	Out 1 function	```\(0=\) NonE \(=\) Output not used \(1=\) H.rEG \(=\) Heating output \(2=\) c.rEG \(=\) Cooling output \(3=A L=\) Alarm output 4 to 11 = Reserved, \(12=\) or.bo \(=\) Out-of-range or burn out indicator \(13=\) P.FAL \(=\) Power failure indicator \(14=\) bo.PF = Out-of-range, burn out and Power failure indicator \(15=\) St.bY = Stand by status indicator \(16=\) diF. 1 = The output repeats the digital input 1 status \(17=\) diF. \(2=\) The output repeats the digital input 2 status \(18=\) on = Out 1 always ON```	0	r/w
15		$\begin{array}{r} 28 \mathrm{D} \\ 280 \mathrm{D} \end{array}$	$\begin{array}{r} 653 \\ 10253 \end{array}$	40654	Initial scale value of the analog retransmission (when Out 1 is an analog output)	-1999 ... Ao1H	dp	r/w
16		$\begin{array}{r} 28 \mathrm{E} \\ 280 \mathrm{E} \end{array}$	$\begin{array}{r} 654 \\ 10254 \end{array}$	40655	Full scale value of the analog retransmission (when Out 1 is an analog output)	Ao1L ... 9999	dp	r/w
17	01AL	$\begin{array}{r} 28 \mathrm{~F} \\ 280 \mathrm{~F} \end{array}$	$\begin{array}{r} 655 \\ 10255 \end{array}$	40656	Alarms linked up with the out 1	0 to 63 $+1=$ Alarm 1 $+2=$ Alarm 2 $+4=$ Alarm 3 $+8=$ Loop break alarm $+16=$ Sensor Break $+32=$ Overload on output 4	0	r/w
18	o1Ac	$\begin{array}{r} 290 \\ 2810 \end{array}$	$\begin{array}{r} 656 \\ 10256 \end{array}$	40657	Out 1 action	$\begin{aligned} & 0=\operatorname{dir}=\text { Direct action } \\ & 1=\mathrm{rEU}=\text { Reverse action } \\ & 2=\text { dir. }=\text { Direct with reversed LED } \\ & 3=\text { ReU. }=\text { Reverse with reversed LED } \end{aligned}$	0	r/w
19	o2F	$\begin{array}{r} 291 \\ 2811 \end{array}$	$\begin{array}{r} 657 \\ 10257 \end{array}$	40658	Out 2 function	See the values of $14=01 \mathrm{~F}$ parameter	0	r/w
20	o2AL	$\begin{array}{r} 292 \\ 2812 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 658 \\ 10258 \\ \hline \end{array}$	40659	Alarms linked up with the out 2	See the values of $17=01 \mathrm{AL}$ parameter	0	r/w
21	o2Ac	$\begin{array}{r} 293 \\ 2813 \\ \hline \end{array}$	$\begin{array}{r} \hline 659 \\ 10259 \\ \hline \end{array}$	40660	Out 2 action	See the values of $18=01 \mathrm{Ac}$ parameter	0	r/w
22	03F	$\begin{array}{r} 294 \\ 2814 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 660 \\ 10260 \\ \hline \end{array}$	40661	Out 3 function	See the values of $14=01 \mathrm{~F}$ parameter	0	r/w
23	03AL	$\begin{array}{r} 295 \\ 2815 \\ \hline \end{array}$	$\begin{array}{r} 661 \\ 10261 \end{array}$	40662	Alarms linked up with the out 3	See the values of $17=01 \mathrm{AL}$ parameter	0	r/w
24	o3Ac	$\begin{array}{r} 296 \\ 2816 \\ \hline \end{array}$	$\begin{array}{r} 662 \\ 10262 \end{array}$	40663	Out 3 action	See the values of $18=01 \mathrm{Ac}$ parameter	0	r/w
25	04F	$\begin{array}{r} 297 \\ 2817 \end{array}$	$\begin{array}{r} 664 \\ 10264 \end{array}$	40664	Out 4 function	See the values of $14=01 \mathrm{~F}$ parameter	0	r/w
26	04AL	$\begin{array}{r} 298 \\ 2818 \\ \hline \end{array}$	$\begin{array}{r} 664 \\ 10264 \end{array}$	40665	Alarms linked up with the out 4	See the values of $17=01 \mathrm{AL}$ parameter	0	r/w
27	04Ac	$\begin{array}{r} 299 \\ 2819 \\ \hline \end{array}$	$\begin{array}{r} 665 \\ 10265 \\ \hline \end{array}$	40666	Out 4 action	See the values of $18=01 \mathrm{Ac}$ parameter	0	r/w

5.3.3 AL1 group

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
28	AL1t	$\begin{array}{r} 29 \mathrm{~A} \\ 281 \mathrm{~A} \end{array}$	$\begin{array}{r} 666 \\ 10266 \end{array}$	40667	Alarm 1 type	0 = nonE = Alarm not used $1=$ LoAb $=$ Absolute low alarm $2=\mathrm{HiAb}=$ Absolute high alarm $3=$ LHAo $=$ Windows alarm in alarm outside the windows $4=$ LHAI $=$ Windows alarm in alarm inside the windows 5 = SE.br = Sensor Break $6=$ LodE $=$ Deviation low alarm (relative) $7=$ HidE $=$ Deviation high alarm (relative) $8=$ LHdo $=$ Relative band alarm in alarm out of the band $9=$ LHdi $=$ Relative band alarm in alarm inside the band	0	r/w
29	Ab1	$\begin{array}{r} 29 \mathrm{~B} \\ 281 \mathrm{~B} \end{array}$	$\begin{array}{r} 667 \\ 10267 \end{array}$	40668	Alarm 1 function	```0 to 15 \(+1=\) Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm \(+8=\) Relative alarm not active at set point change```	0	r/w
30	AL1L	$\begin{array}{r} 29 \mathrm{C} \\ 281 \mathrm{C} \end{array}$	$\begin{array}{r} 668 \\ 10268 \end{array}$	40669	- For High and low alarms, it is the low limit of the AL1 threshold; - For band alarm, it is low alarm threshold	From -1999 to AL1H (E.U.)	dP	r/w
31	AL1H	$\begin{array}{r} \text { 29D } \\ 281 \mathrm{D} \end{array}$	$\begin{array}{r} 669 \\ 10269 \end{array}$	40670	- For High and low alarms, it is the high limit of the AL1 threshold; - For band alarm, it is high alarm threshold	From AL1L to 9999 (E.U.)	dP	r/w
32	AL1	$\begin{array}{r} \hline 29 E \\ 281 \mathrm{E} \\ \hline \end{array}$	$\begin{array}{r} 670 \\ 10270 \end{array}$	40671	AL1 threshold	From AL1L to AL1H (E.U.)	dP	r/w
33	HAL1	$\begin{array}{r} \hline 29 \mathrm{~F} \\ 281 \mathrm{~F} \\ \hline \end{array}$	$\begin{array}{r} 671 \\ 10271 \\ \hline \end{array}$	40672	AL1 hysteresis	1 to 9999 (E.U.)	dP	r/w
34	AL1d	$\begin{array}{\|r} \hline 2 \mathrm{AO} \\ 2820 \\ \hline \end{array}$	$\begin{array}{r} 672 \\ 10272 \end{array}$	40673	AL1 delay	From 0 (oFF) to 9999 (s)	0	r/w
35	AL1o	$\begin{array}{r} 2 \mathrm{~A} 1 \\ 2821 \end{array}$	$\begin{array}{r} 673 \\ 10273 \end{array}$	40674	Alarm 1 enabling during Stand-by mode and out of range conditions	```0 = Alarm 1 disabled during Stand by and out of range 1 = Alarm 1 enabled in stand by mode 2 = Alarm 1 enabled in out of range condition 3 = Alarm 1 enabled in stand by mode and in over range condition```	0	r/w

5.3.4 AL2 group

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
36	AL2t	$\begin{array}{r} 2 \mathrm{~A} 2 \\ 2822 \end{array}$	$\begin{array}{r} 674 \\ 10274 \end{array}$	40675	Alarm 2 type	```\(0=\) nonE = Alarm not used \(1=\) LoAb \(=\) Absolute low alarm \(2=\mathrm{HiAb}=\) Absolute high alarm \(3=\) LHAo \(=\) Windows alarm in alarm outside the windows \(4=\) LHAI \(=\) Windows alarm in alarm inside the windows 5 = SE.br = Sensor Break \(6=\) LodE \(=\) Deviation low alarm (relative) \(7=\) HidE \(=\) Deviation high alarm (relative) \(8=\) LHdo \(=\) Relative band alarm in alarm out of the band \(9=\) LHdi \(=\) Relative band alarm in alarm inside the band```	0	r/w
37	Ab2	$\begin{array}{r} 2 A 3 \\ 2823 \end{array}$	$\begin{array}{r} 675 \\ 10275 \end{array}$	40676	Alarm 2 function	```0 to 15 \(+1=\) Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm \(+8=\) Relative alarm not active at set point change```	0	r/w

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
38	AL2L	$\begin{array}{r} 2 A 4 \\ 2824 \end{array}$	$\begin{array}{r} 676 \\ 10276 \end{array}$	40677	- For High and low alarms, it is the low limit of the AL2 threshold; - For band alarm, it is low alarm threshold	From -1999 to AL2H (E.U.)	dP	r/w
39	AL2H	$\begin{array}{r} 2 A 5 \\ 2825 \end{array}$	$\begin{array}{r} 677 \\ 10277 \end{array}$	40678	- For High and low alarms, it is the high limit of the AL2 threshold; - For band alarm, it is high alarm threshold	From AL2L to 9999 (E.U.)	dP	r/w
40	AL2	$\begin{array}{r} \text { 2A6 } \\ 2826 \end{array}$	$\begin{array}{r} 678 \\ 10278 \end{array}$	40679	AL2 threshold	From AL2L to AL2H (E.U.)	dP	r/w
41	HAL2	$\begin{array}{r} 2 A 7 \\ 2827 \end{array}$	$\begin{array}{r} 679 \\ 10279 \end{array}$	40680	AL2 hysteresis	1 to 9999 (E.U.)	dP	r/w
42	AL2d	$\begin{array}{r} 2 \mathrm{~A} 8 \\ 2828 \end{array}$	$\begin{array}{r} 680 \\ 10280 \end{array}$	40681	AL2 delay	From 0 (oFF) to 9999 (s)	0	r/w
43	AL2o	$\begin{array}{r} 2 \mathrm{~A} 9 \\ 2829 \end{array}$	$\begin{array}{r} 681 \\ 10281 \end{array}$	40682	Alarm 2 enabling during Stand-by mode and out of range conditions	$0=$ Alarm 2 disabled during Stand by and out of range 1 = Alarm 2 enabled in stand by mode 2 = Alarm 2 enabled in out of range condition 3 = Alarm 2 enabled in stand by mode and in over range condition	0	r/w

5.3.5 AL3 group

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
44	AL3t	$\begin{array}{r} 2 A A \\ 282 A \end{array}$	$\begin{array}{r} 682 \\ 10282 \end{array}$	40683	Alarm 3 type	$0=$ nonE = Alarm not used $1=\mathrm{LoAb}=$ Absolute low alarm $2=\mathrm{HiAb}=$ Absolute high alarm $3=$ LHAo $=$ Windows alarm in alarm outside the windows $4=$ LHAI $=$ Windows alarm in alarm inside the windows 5 = SE.br = Sensor Break $6=$ LodE $=$ Deviation low alarm (relative) $7=$ HidE $=$ Deviation high alarm (relative) $8=$ LHdo $=$ Relative band alarm in alarm out of the band $9=$ LHdi $=$ Relative band alarm in alarm inside the band	0	r/w
45	Ab3	$\begin{array}{r} 2 A B \\ 282 B \end{array}$	$\begin{array}{r} 683 \\ 10283 \end{array}$	40684	Alarm 3 function	```0 to 15 \(+1=\) Not active at power up \(+2=\) Latched alarm (manual reset) +4 = Acknowledgeable alarm \(+8=\) Relative alarm not active at set point change```	0	r/w
46	AL3L	$\begin{array}{r} 2 A C \\ 282 C \end{array}$	$\begin{array}{r} 684 \\ 10284 \end{array}$	40685	- For High and low alarms, it is the Iow limit of the AL3 threshold; - For band alarm, it is low alarm threshold	From -1999 to AL3H (E.U.)	dP	r/w
47	AL3H	$\begin{array}{r} \text { 2AD } \\ 282 D \end{array}$	$\begin{array}{r} 685 \\ 10285 \end{array}$	40686	- For High and low alarms, it is the high limit of the AL3 threshold; - For band alarm, it is high alarm threshold	From AL3L to 9999 (E.U.)	dP	r/w
48	AL3	$\begin{gathered} \hline 2 A E \\ 282 E \end{gathered}$	$\begin{array}{r} 686 \\ 10286 \end{array}$	40687	AL3 threshold	From AL3L to AL3H (E.U.)	dP	r/w
49	HAL3	$\begin{array}{\|c\|} \hline 2 \mathrm{AF} \\ 282 \mathrm{~F} \\ \hline \end{array}$	$\begin{array}{r} 687 \\ 10287 \\ \hline \end{array}$	40688	AL3 hysteresis	1 to 9999 (E.U.)	dP	r/w
50	AL3d	$\begin{array}{r} 2 \mathrm{BO} \\ 2830 \\ \hline \end{array}$	$\begin{array}{\|r} 688 \\ 10288 \end{array}$	40689	AL3 delay	From 0 (oFF) to 9999 (s)	0	r/w
51	AL3o	$\begin{array}{r} 2 \mathrm{Z} 1 \\ 2831 \end{array}$	$\begin{array}{r} 689 \\ 10289 \end{array}$		Alarm 3 enabling during Stand-by mode and out of range conditions	$\begin{aligned} & 0=\text { Alarm } 3 \text { disabled during Stand by and out of } \\ & 1=\text { range } \\ & 2=\text { Alarm } 3 \text { enabled in stand by mode } 3 \text { enabled in out of range condition } \\ & 3=\text { Alarm } 3 \text { enabled in stand by mode and in } \\ & \text { over range condition } \end{aligned}$	0	r/w

5.3.6 LBA group - Loop Break Alarm Parameters

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
52	LbAt	$\begin{array}{r} 2 \mathrm{~B} 2 \\ 2832 \end{array}$	$\begin{array}{\|r\|} \hline 690 \\ 10290 \end{array}$	40691	LBA time	From 0 (oFF) to 9999 (s)	0	
53	LbSt	$\begin{array}{r} \text { 2B3 } \\ 2833 \\ \hline \end{array}$	$\begin{array}{r} 691 \\ 10291 \\ \hline \end{array}$	40692	Delta measure used by LBA during Soft start	From 0 (oFF) to 9999 (E.U.)	dP	
54	LbAS	$\begin{array}{r} \text { 2B4 } \\ 2834 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 692 \\ 10292 \\ \hline \end{array}$	40693	Delta measure used by LBA	1 to 9999 (E.U.)	dP	
55	LbcA	$\begin{array}{r} 2 B 5 \\ 2835 \end{array}$	$\begin{array}{r} 693 \\ 10293 \end{array}$	40694	Condition for LBA enabling	$\begin{aligned} & 0=\text { uP }=\text { Active when Pout }=100 \% \\ & 1=\text { dn = Active when Pout }=-100 \% \\ & 2=\text { both = Active in both cases } \end{aligned}$	0	

5.3.7 rEG group - Control Parameters

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
56	cont	$\begin{array}{r} 2 B 6 \\ 2836 \end{array}$	$\begin{array}{r} 694 \\ 10294 \end{array}$	40695	Control type	$\begin{aligned} & \hline 0=\text { Pid }=\text { PID (heat and/or) } \\ & 1=\text { On.FA }=\text { ON/OFF asymmetric hysteresis } \\ & 2=O n . F S=O N / O F F \text { symmetric hysteresis } \\ & 3=n \mathrm{nr}=\text { Heat/Cool ON/OFF control with neutral zone } \\ & 4=\text { Reserved } \end{aligned}$	0	r/w
57	Auto	$\begin{array}{r} 2 B 7 \\ 2837 \end{array}$	$\begin{array}{r} 695 \\ 10295 \end{array}$	40696	Autotuning selection	```\(-4=\) Oscillating auto-tune with automaticrestart at power up and after all point change \(-3=\) Oscillating auto-tune with manual start \(-2=\) Oscillating -tune with auto-matic start at the first power up only \(-1=\) Oscillating auto-tune with auto-matic restart at every power up \(0=\) Not used \(1=\) Fast auto tuning with automatic restart at every power up \(2=\) Fast auto-tune with automatic start the first power up only 3 = FAST auto-tune with manual start \(4=\) FAST auto-tune with automatic restart at power up and after a set point change 5 = Evo-tune with automatic restart at every power up \(6=\) Evo-tune with automatic start the first power up only 7 = Evo-tune with manual start \(8=\) Evo-tune with automatic restart at power up and after a set point change```	0	r/w
58	Aut.r	$\begin{array}{r} \hline \text { 2B8 } \\ 2838 \end{array}$	$\begin{array}{\|r\|} \hline 696 \\ 10296 \end{array}$	40697	Manual start of the Autotuning	$0=o F F=$ Autotuning Not active $1=$ on = Autotuning Active	0	r/w
59	SELF	$\begin{array}{r} 2 B 9 \\ 2839 \end{array}$	$\begin{array}{r} 697 \\ 10297 \end{array}$	40698	Self tuning enabling	$\begin{aligned} & 0=\text { no = The instrument does not perform the } \\ & \text { self-tuning } \\ & 1=\text { YES }=\text { The instrument is performing the self-tuning } \end{aligned}$	0	r/w
60	HSEt	$\begin{array}{r} \text { 2BA } \\ 283 A \end{array}$	$\begin{array}{r} 698 \\ 10298 \end{array}$	40699	Hysteresis of the ON/OFF control	0 to 9999 (E.U.)	dP	
61	cPdt	$\begin{array}{r} \text { 2BB } \\ 283 B \end{array}$	$\begin{array}{r} 699 \\ 10299 \end{array}$	40700	Time for compressor protection	From 0 (oFF) to 9999 (s)	0	r/w
62	Pb	$\begin{array}{r} 2 B C \\ 283 C \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 700 \\ 10300 \\ \hline \end{array}$	40701	Proportional band	1 to 9999 (E.U.)	dP	
63	ti	$\begin{array}{\|r\|} \hline 2 \mathrm{BD} \\ 283 \mathrm{D} \\ \hline \end{array}$	701 10301	40702	Integral time	From 0 (oFF) to 9999 (s)	0	r/w
64	td	$\begin{array}{r} \hline 2 \mathrm{BE} \\ 283 \mathrm{E} \end{array}$	$\begin{array}{r} 702 \\ 10302 \\ \hline \end{array}$	40703	Derivative time	From 0 (oFF) to 9999 (s)	0	r/w
65	Fuoc	$\begin{array}{r} \hline 2 B F \\ 283 F \end{array}$	$\begin{array}{r} 703 \\ 10303 \end{array}$	40704	Fuzzy overshoot control	0 to 200	2	r/w
66	tcH	$\begin{array}{r} \hline 2 \mathrm{CO} \\ 2840 \\ \hline \end{array}$	$\begin{array}{r} 704 \\ 10304 \\ \hline \end{array}$	40705	Heating output cycle time	10 to 1300 (s)	1	r/w

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
67	rcG	$\begin{array}{r} 2 \mathrm{C} 1 \\ 2841 \end{array}$	$\begin{array}{r} 705 \\ 10305 \end{array}$	40706	Power ratio between heating and cooling action	1 to 9999	2	r/w
68	tcc	$\begin{array}{r} 2 \mathrm{C} 2 \\ 2842 \end{array}$	$\begin{array}{r} 706 \\ 10306 \end{array}$	40707	Cooling output cycle time	1 to 1300 (s)	1	r/w
69	rS	$\begin{array}{r} 2 \mathrm{C} 3 \\ 2843 \end{array}$	$\begin{array}{r} 707 \\ 10307 \end{array}$	40708	Manual reset (Integral pre-load)	-1000 to +1000 (\%)	1	r/w
70		$\begin{array}{r} 2 \mathrm{C} 4 \\ 2844 \end{array}$	$\begin{array}{r\|} 708 \\ 10308 \end{array}$	40709	Reserved			
71		$\begin{array}{r} 2 \mathrm{C} 5 \\ 2845 \end{array}$	$\begin{array}{r} 709 \\ 10309 \\ \hline \end{array}$	40710	Reserved			
72	od	$\begin{array}{r} 2 \mathrm{C} 6 \\ 2846 \end{array}$	$\begin{array}{r\|} \hline 710 \\ 10310 \end{array}$	40711	Delay at power up	From 0.00 (oFF) to 9959 (hh.mm)	2	r/w
73	St.P	$\begin{array}{r} 2 C 7 \\ 2847 \end{array}$	$\begin{array}{r} 711 \\ 10311 \end{array}$	40712	Maximum power output used during soft start	-100 to 100 (\%)	0	r/w
74	SSt	$\begin{array}{r} 2 \mathrm{C} 8 \\ 2848 \end{array}$	$\begin{array}{r} 712 \\ 10312 \end{array}$	40713	Soft start time	0 (oFF) to $800=\mathrm{inF}$ ($\mathrm{h} . \mathrm{mm}$)	2	r/w
75	SS.tH	$\begin{array}{r} 2 \mathrm{C} 9 \\ 2849 \end{array}$	$\begin{array}{r} 713 \\ 10313 \end{array}$	40714	Threshold for soft start disabling	-2000 (oFF) to 9999 (E.U.)	dP	r/w

5.3.8 SP group - Set point parameters

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
76	nSP	$\begin{array}{r} \hline 2 \mathrm{CA} \\ 284 \mathrm{~A} \end{array}$	$\begin{array}{r} 714 \\ 10314 \end{array}$	40715	Number of used set points	1 to 4	0	r/w
77	SPLL	$\begin{array}{r} 2 \mathrm{CB} \\ 284 \mathrm{~B} \end{array}$	$\begin{array}{r} 715 \\ 10315 \end{array}$	40716	Minimum set point value	From -1999 to SPHL	dP	r/w
78	SPHL	$\begin{array}{r} 2 C C \\ 284 C \end{array}$	$\begin{array}{r} 716 \\ 10316 \end{array}$	40717	Maximum set point value	From SPLL to 9999	dP	r/w
79	SP	$\begin{gathered} \text { 2CD } \\ 284 D \end{gathered}$	$\begin{array}{r} 717 \\ 10317 \end{array}$	40718	Set point 1	From SPLL to SPLH	dP	r/w
80	SP 2	$\begin{gathered} 2 C E \\ 284 E \end{gathered}$	$\begin{array}{r} 718 \\ 10318 \end{array}$	40719	Set point 2	From SPLL to SPLH	dP	r/w
81	SP 3	$\begin{array}{r} 2 \mathrm{CF} \\ 284 \mathrm{~F} \end{array}$	$\begin{array}{r} 719 \\ 10319 \end{array}$	40720	Set point 3	From SPLL to SPLH	dP	r/w
82	SP 4	$\begin{array}{r} 2 D 0 \\ 2850 \end{array}$	$\begin{array}{r} 720 \\ 10320 \end{array}$	40721	Set point 4	From SPLL to SPLH	dP	r/w
83	A.SP	$\begin{array}{r} \text { 2D1 } \\ 2851 \end{array}$	$\begin{array}{r} 721 \\ 10321 \end{array}$	40722	Selection of the active set point	$\begin{aligned} & 0=S P \\ & 1=S P 2 \\ & 2=S P 3 \\ & 3=S P 4 \end{aligned}$	0	r/w
84	SP.rt	$\begin{array}{r} 2 D 2 \\ 2852 \end{array}$	$\begin{array}{r} 722 \\ 10322 \end{array}$	40723	Remote set point type	$0=$ RSP $=$ The value coming from serial link is used as remote set point $1=$ trin = The value coming from serial link will be added to the local set point selected by A.SP and the sum becomes the operative set point $2=$ PErc $=$ The value coming from serial link will be scaled on the input range and this value will be used as remote SP	0	r/w
85	SPLr	$\begin{array}{r} \text { 2D3 } \\ 2853 \end{array}$	$\begin{array}{r} 723 \\ 10323 \end{array}$	40724	Local/remote set point selection	$\begin{aligned} & 0=\text { Loc }=\text { local } \\ & 1=\text { rEn }=\text { remote } \end{aligned}$	0	r/w
86	SP.u	$\begin{array}{r} \text { 2D4 } \\ 2854 \end{array}$	$\begin{array}{r} 724 \\ 10324 \end{array}$	40725	Rate of rise for POSITIVE set point change (ramp UP)	0.01 to 99.99 (inF) engineering units per minute	2	r/w
87	SP.d	$\begin{array}{r} 2 D 5 \\ 2855 \end{array}$	$\begin{array}{r} 725 \\ 10325 \\ \hline \end{array}$		Rate of rise for NEGATIVE set point change (ramp DOWN)	0.01 to 99.99 (inF) engineering units per minute	2	r/w

5.3.9 Reserved Parameters

| no. | Param. | Address | Description | Values | Dec.
 Point | r/w | |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| | | $2 D 6$ to $2 F 3$ | 726 to 755 | 40727 to 40756 | Reserved | | |

5.3.10 PAn group - Operator HMI parameters

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
118	PAS2	$\begin{array}{r} 2 F 4 \\ 2874 \end{array}$	$\begin{array}{\|r\|} \hline 756 \\ 10356 \end{array}$	40757	Level 2 password (limited access level)	oFF (Level 2 not protected by password) 1 to 200	0	r/w
119	PAS3	$\begin{array}{r} \hline 2 F 5 \\ 2875 \end{array}$	$\begin{array}{r} 757 \\ 10357 \end{array}$	40758	Level 3 password (complete configuration level)	3 to 200	0	r/w
120	PAS4	$\begin{array}{r} 2 F 6 \\ 2876 \end{array}$	$\begin{array}{r} 758 \\ 10358 \end{array}$	40759	Level 4 password (CODE configuration level)	201 to 400	0	r/w
121	uSrb	$\begin{array}{r} 2 F 7 \\ 2877 \end{array}$	$\begin{array}{r} 759 \\ 10359 \end{array}$	40760	© button function during RUN TIME	$0=$ nonE $=$ No function $1=$ tunE $=$ Auto-tune/self-tune enabling. A single press (longer than 1 second) starts the auto-tune $2=$ oPLo $=$ Manual mode. The first pressure puts the instrument in manual mode (OPLO) while a second one puts the instrument in Auto mode $3=\mathrm{AAc}=$ Alarm reset $4=\mathrm{ASi}=$ Alarm acknowledge $5=\mathrm{chSP}=$ Sequential set point selection $6=$ St.by $=$ Stand by mode. The first press puts the instrument in stand by mode while a second one puts the instrument in Auto mode. 7 to $10=$ Reserved	0	r/w
122	diSP	$\begin{array}{r} 2 F 8 \\ 2878 \end{array}$	$\begin{array}{r} 760 \\ 10360 \end{array}$	40761	Display management	$0=$ nonE $=$ Standard display 1 = Pou = Power output $2=$ SPF = Final set point $3=$ Spo $=$ Operative set point $4=$ AL1 $=$ Alarm 1 threshold $5=$ AL2 $=$ Alarm 2 threshold $6=$ AL3 $=$ Alarm 3 threshold 7 to 12 = Reserved, 13 = PErc = Percent of the power output used during soft start (when the soft start time is equal to infinite, the limit is ever active and it can be used also when ON/ OFF control is selected) 14 = Reserved		r/w
123	di.cL	$\begin{array}{r} 2 F 9 \\ 2879 \end{array}$	$\begin{array}{r} 761 \\ 10361 \end{array}$	40762	Display colour	```\(0=\) The display colour changes to point out the actual deviation (PV - SP) 1 = Display red (fix) 2 = Display green (fix) 3 = Display orange (fix)```		
124	AdE	$\begin{array}{r} \hline 2 F A \\ 287 A \end{array}$	$\begin{array}{\|r\|} \hline 762 \\ 10362 \end{array}$	40763	Deviation for display colour management	1 to 9999	Dp	r/w
125	di.St	$\begin{array}{r} \hline 2 \mathrm{FB} \\ 287 \mathrm{~B} \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 763 \\ 10363 \\ \hline \end{array}$	40764	Display Timeout	0 = oFF (display always ON) to 9959 (mm.ss)	2	r/w
126	fiLd	$\begin{array}{\|r} \hline 2 \mathrm{FC} \\ 287 \mathrm{C} \end{array}$	$\begin{array}{\|r\|} \hline 764 \\ 10364 \end{array}$	40765	Filter on the displayed value	$0=$ oFF (filter disabled) to 100	Dp	r/w
127		$\begin{array}{\|r\|} \hline \text { 2FD } \\ 287 D \end{array}$	$\begin{array}{\|r\|} \hline 765 \\ 10365 \end{array}$	40766	Reserved			
128	dSPu	$\begin{array}{r} 2 F E \\ 287 E \end{array}$	$\begin{array}{r} 766 \\ 10366 \end{array}$	40767	Instrument status at power ON	$\begin{aligned} & 0=\text { AS. } \operatorname{Pr}=\text { Starts in the same way it was prior to the power } \\ & \text { down } \\ & 1=\text { Auto }=\text { Starts in Auto mode } \\ & 2=\text { oP. } 0=\text { Starts in manual mode with a power output equal } \\ & 3=\text { to zero } \\ & 3=\text { St.bY }=\text { Starts in stand-by mode } \end{aligned}$	0	r/w

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
129	oPr.E	$\begin{gathered} 2 F F \\ 287 F \end{gathered}$	$\begin{array}{r} 767 \\ 10367 \end{array}$	40768	Operative modes enabling	$0=$ ALL $=$ All modes will be selectable by the next parameter $1=$ Au.oP = Auto and manual (OPLO) mode only will be selectable by the next parameter $2=$ Au.Sb $=$ Auto and Stand-by modes only will be selectable by the next parameter	0	r/w
130	oPEr	$\begin{array}{r} 300 \\ 2880 \end{array}$	$\begin{array}{r} 768 \\ 10368 \end{array}$	40769	Operative mode selection	$\begin{aligned} & 0=\text { Auto }=\text { Auto mode } \\ & 1=\text { oPLo }=\text { Manual mode } \\ & 2=\text { St.bY }=\text { Stand by mode } \end{aligned}$	0	r/w

5.3.11 Ser group - Serial link parameters

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
131	Add	$\begin{array}{r} 301 \\ 2881 \end{array}$	$\begin{array}{r\|} 769 \\ 10369 \end{array}$	40770	Instrument address	0 (oFF) to 254	0	r/w
132	bAud	$\begin{array}{r} 302 \\ 2882 \end{array}$	$\begin{array}{r} 770 \\ 10370 \end{array}$	40771	baud rate	$\begin{aligned} & 0=1200=1200 \text { baud } \\ & 1=2400=2400 \text { baud } \\ & 2=9600=9600 \text { baud } \\ & 3=19.2=19200 \text { baud } \\ & 4=38.4=38400 \text { baud } \end{aligned}$	0	r/w
133	trSP	$\begin{array}{r} 303 \\ 2883 \end{array}$	$\begin{array}{r} 771 \\ 10371 \end{array}$	40772	Selection of the value to be retransmitted (Master)	$0=$ nonE $=$ Retransmission not used (the instrument is a slave) $1=\mathrm{rSP}=$ The instrument becomes a Master and retransmits the operative set point $2=$ PErc $=$ The instrument become a Master and it retransmits the power output	0	r/w

5.3.12 COn group - Consumption parameters

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
134	Co.tY	$\begin{array}{r} 304 \\ 2884 \end{array}$	$\begin{array}{r} 772 \\ 10372 \end{array}$	40773	Measurement type	0 = oFF = Not used 1 = Instantaneous power (kW) $2=$ Power consumption (kW/h) 3 = Reserved $4=$ Total worked days with threshold. It is the number of hours that the instrument is turned ON divided for 24 $5=$ Total worked hours with threshold. It is the number of hours that the instrument is turned ON $6=$ Total worked days with threshold: number of hours the instrument is turned ON divided by 24 , the controller is forced in standby when Co.ty value reaches the threshold set in [137] h.Job. 7 = Total worked hours with threshold: number of hours that the instrument is turned ON, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. $8=$ Totalizer of control relay worked days: number of hours the control relay has been in ON condition, divided by 24. $9=$ Totalizer of control relay worked hours: number of hours the control relay has been in ON condition. $10=$ Totalizer of control relay worked days with threshold: number of hours the control relay has been in ON condition divided by 24 , the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. $11=$ Totalizer of control relay worked hours with threshold: number of hours the control relay has been in ON condition, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job.	0	r/w
135	UoLt	$\begin{array}{r} 305 \\ 2885 \end{array}$	$\begin{array}{r} 773 \\ 10373 \\ \hline \end{array}$	40774	Nominal Voltage of the load	1 to 9999 (V)	0	r/w
136	cur	$\begin{array}{r} 306 \\ 2886 \\ \hline \end{array}$	$\begin{array}{r} 774 \\ 10374 \\ \hline \end{array}$	40775	Nominal current of the load	1 to 999 (A)	0	r/w
137	h.Job	$\begin{array}{r} 307 \\ 2887 \end{array}$	$\begin{array}{r} 775 \\ 10375 \end{array}$	40776	Threshold of the working period	0 (oFF) to 999	0	r/w

no.	Param.	Address			Description	Values		Dec. Point	r/w
		Hex	Dec	Ref. no.					
138	t.Job	$\begin{array}{r} 308 \\ 2888 \end{array}$	$\begin{array}{\|r\|} \hline 776 \\ 10376 \\ \hline \end{array}$	40777	Worked time (not resettable)	0 to 9999		0	r

5.3.13 CAI group - User calibration parameters

no.	Param.	Address			Description	Values	Dec. Point	r/w
		Hex	Dec	Ref. no.				
139	A.L.P	$\begin{array}{r} 309 \\ 2889 \end{array}$	$\begin{array}{r} 777 \\ 10377 \end{array}$	40778	Adjust Low Point	-1999 to (A.H.P - 10)(E.U.)	dP	r/w
140	A.L.o	$\begin{array}{r} \hline 30 \mathrm{~A} \\ 288 \mathrm{~A} \end{array}$	$\begin{array}{\|r\|} \hline 778 \\ 10378 \end{array}$	40779	Adjust Low Offset	-300 to +300 (E.U.)	dP	r/w
141	A.H.P	$\begin{array}{r} 30 \mathrm{~B} \\ 288 \mathrm{~B} \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 779 \\ 10379 \\ \hline \end{array}$	40780	Adjust High Point	From (A.L.P + 10) to 9999 (E.U.)	dP	r/w
142	A.H.o	$\begin{array}{r} \hline 30 \mathrm{C} \\ 288 \mathrm{C} \end{array}$	$\begin{array}{\|r\|} \hline 780 \\ 10380 \end{array}$	40781	Adjust High Offset	-300 to +300 (E.U.)	dP	r/w

YOKOGAWA

All rights reserved. No parts of this publication may be reproduced, in any form, without Yokogawa Electric Corporation written permission.
Every care has been taken preparing this manual; the document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist Yokogawa Electric Corporation reserves the right to make changes without any notice.
In no event shall Yokogawa Electric Corporation be liable for any damages arising out of or related to this document or the information contained in it.
If errors are suspected, please contact Yokogawa Electric Corporation at the above address.

Yokogawa Electric Corporation
9-32, Nakacho 2-chome, Musashino-shi, Tokyo 180-8750, Japan
www.yokogawa.com

